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ABSTRACT

Metalearning by Exploiting Granular Machine Learning Pipeline
Metadata

Brandon J. Schoenfeld
Department of Computer Science, BYU

Master of Science

Automatic machine learning (AutoML) systems have been shown to perform better
when they use metamodels trained offline. Existing offline metalearning approaches treat ML
models as black boxes. However, modern ML models often compose multiple ML algorithms
into ML pipelines. We expand previous metalearning work on estimating the performance
and ranking of ML models by exploiting the metadata about which ML algorithms are used
in a given pipeline. We propose a dynamically assembled neural network with the potential
to model arbitrary DAG structures. We compare our proposed metamodel against reasonable
baselines that exploit varying amounts of pipeline metadata, including metamodels used in
existing AutoML systems. We observe that metamodels that fully exploit pipeline metadata
are better estimators of pipeline performance. We also find that ranking pipelines based on
dataset metafeature similarity outperforms ranking based on performance estimates.

Keywords: metalearning, automl, ml pipeline, metamodel, meta-dataset, metafeatures
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Chapter 1

Introduction

Automatic machine learning (AutoML) systems can use metalearning, either partially

or entirely, to aid in machine learning (ML) program search. Such metalearning can democra-

tize ML by aiding users in selecting suitable ML models, as well as facilitate learning from past

results when presented with a new task [4]. One usable form of metalearning is to estimate ML

program generalization performance, e.g. accuracy. Good estimates of ML model accuracy

would allow an AutoML system to prioritize candidate ML program execution, favoring early

execution of high performing ML programs before finite computational resources, especially

time, are spent.

Modern ML programs contain multiple ML algorithms (e.g. data encoding, feature

selection, missing value imputation, classification, ensembling, etc.) composed into an ML

pipeline . In general, the computational structure of a pipeline can be represented by a

directed acyclic graph (DAG) with contextual, heterogeneous nodes (e.g. Figure 3.1). Each

node in the pipeline corresponds to a stand-alone ML algorithm, with a different node

type for each ML algorithm. Each node or ML algorithm has the additional context of the

hyper-parameters used.

Related metalearning work (Chapter 2) has moved beyond metalearning over single

algorithms to entire ML pipelines, but with some limitations. Often, pipelines are treated as

black-box, stand-alone ML programs, even though they are composed of some of the same

building blocks in many cases. This approach helps simplify an already challenging problem

but restricts the metamodels’ ability to learn from commonalities across pipelines. Other work

1
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has explored approaches that utilize the granular metadata of which ML algorithms comprise

the pipelines, but do so in a restricted pipeline space, e.g straight pipelines. Simplifying

assumptions preclude the possibility of metalearning over more interesting pipelines, such as

ensembles.

We address the challenge of extending metalearning work to pipelines with potentially

unbounded size and shape. This approach has immediate applicability in a system like

TPOT [35], which uses a genetic algorithm to search for arbitrary pipelines, by speeding

up pipeline search with estimates of performance. We explore a broad range of types of

metamodels that utilize the pipeline metadata in varying degrees of granularity (Section 3.2),

from naive metamodels to sophisticated deep learning metamodels, to estimate ML pipeline

performance on novel tasks. We also propose a neural network architecture with the potential

to model arbitrary DAG structures, which we call a Dynamic Neural Architecture (DNA). A

similar model [1] was proposed in the context of visual question answering.

This work focuses on offline metalearning , where the metamodels are trained to

estimate pipeline performance on a novel dataset of interest given metadata about pipeline

executions from a collection of other datasets. In contrast, online metalearning creates

metamodels from metadata of pipelines executed only on the dataset of interest. We further

evaluate our metamodels by considering how well their estimates of pipeline performance

allow them to correctly rank pipelines. To our knowledge, this is the first work that presents

metalearning models capable of handling arbitrary pipeline structures.

2
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Chapter 2

Related Work

Metalearning can be used to predict the best algorithm (or pipeline) of a set, rank

algorithms, or estimate algorithm performance [4]. Each of these can be used in offline, online,

or hybrid approaches. However, all existing approaches have made simplifying assumptions

about the pipeline search space to facilitate metalearning. Our work expands on existing work

by removing the simplifying assumptions in the pipeline search space. For a more thorough

metalearning survey see [51].

Offline metalearning approaches attempt to mimic human behavior by learning from

past experience or results. Observing which ML algorithms, hyper-parameter configurations,

or pipelines worked well on past tasks should help guide model search for novel tasks. A

common metalearning approach is to extract metafeatures from datasets (thereby distilling a

dataset down to a single vector representation) and then recommend the ML algorithms that

performed best on datasets with similar metafeatures. An effort to provide a benchmarking

dataset for metalearning [41] collected many datasets, ran several classification algorithms on

those datasets, computed metafeatures for each dataset, and made the metadataset and the

metafeature extraction tool publicly available.

Others have made similar meta-datasets and computed metafeatures to aid in selecting

single classification algorithms [5, 12, 56], choosing initial hyper-parameter configurations

in a fixed hyper-parameter space [19, 54], or selecting single preprocessing algorithms [44].

OpenML [52] hosts a large collection of metadata for offline metalearning, but their pipelines

(flows) are currently limited to straight pipelines. Others have attempted to standardize

3
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metafeatures [43], explore which OpenML metafeatures have the most predictive power [3],

use different distance metrics [33], automatically develop new sets of metafeatures [38], learn

dataset distance with a Random Forest model [46], or follow the recent trends of using neural

network embeddings to create Dataset2Vec [29]. Our work does not propose advances in

dataset metafeature or similarity measures, but uses existing metafeatures.

There exist many styles of online metalearning. Various techniques exist for tuning

hyper-parameters, such as random search [2], Bayesian optimization [47], and gradient-based

methods [32]. Sequential Model-based Optimization (SMBO) [27] uses a surrogate model

and an acquisition function to select the next hyper-parameter configuration for a given

algorithm. AlphaD3M [15, 16] uses online deep reinforcement learning to explore the pipeline

space. Internally, it uses an LSTM [26] to estimate the performance of straight pipelines and

recommend actions to change the pipeline. TPOT [35] and AutoStacker [8] take an online

evolutionary approach to modify pipelines, composed of preprocessing and classification

algorithms. A more recent iteration of TPOT, Layered TPOT [24], estimates pipeline

performance online by executing the pipeline on a subset of the data.

Hybrid approaches combine both offline and online metalearning approaches. Systems

like Auto-sklearn [18] warm-start pipeline search with an offline approach, k-nearest datasets

in metafeature space, followed by an online Bayesian optimization process. Furthermore,

Auto-sklearn and AutoWeka [30, 50] use a hierarchical method that handles conditional

hyper-parameters, treating the particular algorithm as the top-most hyper-parameter. The

Mosaic system [40] implements an offline metalearning approach similar to Auto-sklearn but

uses surrogate models for online metalearning.

Instead of combining separate offline and online techniques, hybrid approaches can

also, for example, combine multiple past hyper-parameter optimization runs with a novel one

into a single meta-loss function [20]. Probabilistic Matrix Factorization has been used to [22]

estimate the performance of pipelines of length two, after a few pipelines have been executed

to obtain a few data points online. This approach treats pipelines as indivisible entities, not

4
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compositions of stand-alone ML algorithms. The work we present would be immediately

applicable to any AutoML system that uses an offline or hybrid offline-online metalearning

approach.

5
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Chapter 3

Methodology

We take a step beyond previous work and attempt offline metalearning on ML pipelines

by exploiting the metadata of pipelines with potentially arbitrary structure. Using machine

learning, we should be able to extract any patterns in pipeline performance between pipelines

that are composed of one or more of the same ML algorithms. We utilize the ML framework

we helped to develop as part of the Data-Driven Discovery of Models (D3M) program [34] to

create and execute pipelines, and thus build a meta-dataset. We then outline the metamodels

we use based on how they operate on the metadata. For tractability, we scope this work to

classification tasks of small to moderate size and create pipelines with only a few different

structures; however, our approach is applicable to any task type and pipelines with arbitrary

structure.

3.1 Metadata

The D3M program gathered datasets1 for AutoML system development and testing. As

part of that effort, MIT Lincoln Labs created annotations that describe dataset metadata

(especially semantic column types), distinguish the features from the targets, identify metrics

to optimize, and include a static train/test split. All of these components facilitate automatic

pipeline synthesis. From these curated datasets, we selected 194 classification datasets, which

were originally sourced from OpenML [52], UCI Machine Learning Repository [13, 31], and

Zenodo [25]. These datasets were chosen because they were otherwise publicly available and

1Available D3M datasets are found at https://datasets.datadrivendiscovery.org/d3m/datasets.

6
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such that metafeatures could be computed within a few minutes per dataset. A complete list

of the datasets we used can be found in Appendix A.

We computed metafeatures using a package2 we implemented in Python to contain the

union of metafeatures presented in an R package [41] and OpenML [52]. This tool computes

simple, statistical, information-theoretic, landmarking, and model-based metafeatures. Exam-

ples of these include the number of instances in the dataset, the mean of each class probability,

class entropy, 1-nearest neighbor error rate, and decision tree mean level size, respectively.

We then selected the intersection of metafeatures that were computable across each of our

selected datasets, resulting in 72 total metafeatures. A complete list of metafeatures can be

found in Appendix B.

We generated pipelines that would be representative of typical, human-made machine

learning pipelines, including straight pipelines with a single classifier and ensembles of three

classifiers. Generating pipelines instead of using results from OpenML, for example, allows

us to explore DAG pipeline and enables us to perform a grid search over all possible ML

algorithm combinations in a constrained pipeline space. The straight pipelines consist of a

missing value imputation ML algorithm, a feature preprocessing algorithm (including the

no-op algorithm), and a final classifier. The imputation ML algorithm sampled values from

each column independently and uniformly over all instances with known values. We also

create DAG pipelines that are ensembles of three straight pipelines, after the imputation

step, and use a simple voting algorithm to make final classifications. Figure 3.1 shows a

template for straight and DAG pipelines. Two pipeline structures allows us to show a proof

of concept for exploiting granular pipeline metadata that could be expanded to arbitrary

DAG structures. We included 9 feature preprocessing algorithms (10 including the no-op), 14

classification ML algorithms, and 7 “glue” algorithms:

• Feature Preprocessing: FastICA [28], GenericUnivariateSelect, KernelPCA [45], Min-

MaxScaler, Nystroem [14], PCA [55], SelectFwe, SelectPercentile, StandardScaler

2Our metafeature extraction tool can be found at https://github.com/byu-dml/metalearn or on the Python
Package Index at https://pypi.org/project/metalearn/.

7
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Missing-value
Imputer

Ensemble
Voter

Classifier 3

Classifier 2

Classifier 1

Preprocessor 3

Preprocessor 1

Preprocessor 2

Figure 3.1: A pipeline can be represented as a directed acyclic graph (DAG). This example
pipeline is a template for the pipelines generated in our metadata. A dataset is input on
the left and data flows from left to right, following the arrows. Each node transforms the
data with some ML algorithm and the final predictions are output on the right. The green
nodes show the structure of a straight pipeline. The green and blue nodes combined show an
ensemble pipeline. “Glue” ML algorithms for parsing data, manipulating data structures,
etc., are part of the actual pipelines, but are omitted here for expediency.

• Classification: BaggingClassifier [6], BernoulliNB [17], DecisionTreeClassifier [49], Extra-

TreesClassifier [23], GaussianNB [17], GradientBoostingClassifier [21], KNeighborsClas-

sifier [9], LinearDiscriminantAnalysis [42], LinearSVC [39], LogisticRegression [57],

PassiveAggresiveClassifier [10], RandomForestClassifier [7], SGDClassifier [39], SVC [39]

• Glue: ColumnParserPrimitive, ConstructPredictionsPrimitive, DatasetToDataFrame-

Primitive, EnsembleVoting, ExtractColumnsBySemanticTypesPrimitive, Horizontal-

ConcatPrimitive, RenameDuplicateColumnsPrimitive

We used Scikit-learn [37] implementations for feature preprocessing and classification algo-

rithms, with all ML algorithms being wrapped inside a common D3M API.3

After removing pipelines that were non-functional on our collection of datasets (due to

out-of-memory errors, ML algorithm bugs, or timeout errors), there remained 4,592 different

pipelines. All ML algorithms use default hyper-parameters because exploring the hyper-

parameter space of each pipeline is outside the scope of this work. We collected the results

of 413,567 distinct runs of pipelines on our chosen datasets using a modest compute cluster

with 20 identical machines, each with 4 Intel Core i7-4770K CPUs and 32 GB DIMM1 RAM.

3The D3M API is located at https://gitlab.com/datadrivendiscovery/d3m. ML algorithm annota-
tions with links to the source code are at https://gitlab.com/datadrivendiscovery/primitives.

8
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The metadata contained in each of these pipeline runs constitutes a single instance in

the metadataset. Each instance consists of the dataset identifier, the dataset metafeatures, a

DAG representation of the pipeline (including ML algorithm identifiers and input/output

connections), and the pipeline’s score on the test set of the indicated dataset. We used the

macro F1 score, though any classification metric could be used. The test macro F1 score is

thus the predictive target for our metalearning tasks.

We randomly partitioned our metadataset into train, validation, and test sets, grouped

by the dataset such that each split contained datasets and corresponding runs of pipelines not

found in the other two splits. The train set contains 125 datasets with 225,668 total metadata

instances, the validation set contains 25 datasets with 90,131 instances, and the test set

contains 44 datasets with the remaining 97,768 instances. We choose to use a meta-holdout

set instead of using meta-cross-validation due to computational tractability in tuning the

metamodels’ hyper-parameters on the meta-validation set.

3.2 Metamodels

We consider a broad range of metamodels, including naive baselines, state-of-the-art baselines,

classic machine learning models, and modern deep learning models. This diversity allows

us to evaluate how well we can estimate pipeline performance and how well this estimate

allows us to rank pipelines. These metamodels are implemented using Scikit-lean [37] and

PyTorch [36]. We outline and group the metamodels based on the amount of the pipeline

metadata they use to make their predictions.

Metadata Agnostic Metamodels

The most naive metamodel, the constant Mean model, uses the average performance of all

pipelines in the training metadata as its estimate of performance. Since the Mean model is

constant, it cannot provide a ranking of pipelines, so we instead utilize the Random model

9
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as the naive baseline when evaluating pipeline ranking performance. This model generates a

random ranking of pipelines, independent of the metadata.

Pipeline Agnostic Metamodels

The next metamodel we consider is the one used by Auto-sklearn [18] to warm-start its

Bayesian optimization process. Given a dataset’s metafeatures, it finds the k-nearest datasets

(where distance is defined as the L1 distance between dataset metafeatures) and recommends

the best pipeline from each of those nearest datasets. We label this metamodel k-ND . Note

that this model only provides a ranking of pipelines, not estimates of performance. Also, this

approach under-utilizes available metadata as it ignores any pipeline structure and discards

most instances of metadata except for the one best pipeline for each dataset. It is thus limited

to recommending only those pipelines that were the best pipeline for some dataset within the

train split of the metadataset, which is a small fraction of available pipelines.

We also present results for an adaptation of Auto-sklearn’s k-ND, k-NN regression,

for estimating pipeline performance directly. This adapts k-ND by weighting pipeline scores

of the nearest datasets by the normalized inverse L1 distance. This approach allows us to use

all available metadata instances instead of discarding most of it.

Pipeline Structure Agnostic Metamodels

We include two more baseline models that utilize the information about which ML algorithms

are used in a given pipeline, in addition to the dataset metafeatures, for estimating pipeline

performance. The pipeline representation is simplified from a DAG structure to a vector of

indicator variables for each ML algorithm. We use Scikit-learn’s Linear Regression and

Random Forest as a metamodels.

Instead of hand-picking more classical models, we bootstrap model selection by passing

our meta-dataset to Auto-sklearn. We give this system the default 24 hours to generate and

10
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optimize an ensemble of Scikit-learn models. The resulting model is a metamodel, which we

include in our evaluation and label Meta Auto-sklearn .

Linearized Pipeline DAG Metamodels

Increasing the amount of metadata available, we explore a couple of deep learning sequence

models: the LSTM [26] model and the attention-based Transformer [53] model (which we

label Transformer). These metamodels create a latent representation of pipelines by first

requiring the DAG structure to be linearized into a sequence. The LSTM metamodel thus

ignores some of the computational structure of the pipeline. The Transformer metamodel

assumes that each step of the pipeline is dependent on all previous steps, according to the

linearized order. While this loses some information about the computational structure of the

pipeline, this preserves more pipeline information than any of the above approaches discussed.

The encoding of the pipeline created by these metamodels is then concatenated with

the dataset metafeatures and passed to a final set of fully connected layers for final pipeline

performance estimation. We note that the Transformer model could be adapted to use a

masking mechanism that would preserve the DAG structure of the pipeline, but leave this for

future work.

Complete Metadata Metamodels

The first of our final two models is the DAG LSTM [48, 58], which creates a latent

embedding of the full pipeline DAG, without discarding structural information. The DAG

LSTM has a single LSTM cell that passes over each node in the DAG. When a node has

multiple outgoing edges, a copy of the current LSTM cell output and hidden state is made for

each edge and the LSTM cell operates in parallel on the subsequent paths in the DAG. When

a node has multiple incoming edges, the outputs and hidden states from all incoming nodes

are aggregated together (we use the element-wise max operator) and passed to the LSTM

cell. The final output of the final LSTM cell is the pipeline embedding. This embedding is

11
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concatenated with the dataset metafeatures and passed to a set of fully-connected layers for

pipeline performance estimation. The loss is back-propagated through the full connected

layers and the DAG LSTM.

The final model is our proposed Dynamic Neural Architecture, or DNA. In the

context of visual question answering, a similar model was proposed as the Neural Module

Network [1]. Unlike other models presented here, DNA does not create an embedding of

the pipeline DAG. Its weights are not even explicitly trained on the input DAG, but only

implicitly. DNA is initialized with three types of neural network modules: node modules, an

input module, and an output module. In general, each module can be any neural network

operator, but we use only blocks of fully-connected layers. A node module is instantiated for

each type of node in the heterogeneous DAGs to be modeled, which in our case is one node

module for each ML algorithm used to construct the pipelines.

At runtime, DNA’s network is constructed dynamically by composing the network

modules based on the input DAG, as shown in Figure 3.2. The network begins with the

input module and ends with the output module. In the middle, the network is dynamically

composed of the node modules that correspond to the nodes in the DAG and they are

composed in the exact same graphical structure as the input DAG. The input to the network,

in our case, is the dataset metafeature vector and the output is an estimate of pipeline

performance.

The dynamic composition of neural network modules requires that we fix a latent

dimensionality between all the modules for interoperability. The input module enables us

to map from the input dimensionality to the latent dimensionality; similarly, the output

module maps from the latent dimensionality to the output dimensionality. When a module

has multiple inputs from other modules, the inputs are aggregated together (again, we use

the element-wise max operator), as in the DAG LSTM.

The DNA network can be trained using any typical loss function and optimizer. The

network modules are trained jointly, though only those modules which are used in any given,

12
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   Pipeline

   Dynamic Neural
   Architecture

ML Algorithm A ML Algorithm D

ML Algorithm C

ML Algorithm B

Dataset
Score

Module A Module D

Module C

Module B

Score
EstimateInput Module Output ModuleMetafeatures

Metafeature
Extraction

Predictions

Figure 3.2: The Dynamic Neural Architecture (DNA) contains a distinct neural network
module instance (e.g. a block of fully-connected layers) reserved for each type of node (e.g.
ML algorithm) in the directed acyclic graphs (DAGs) (e.g. ML pipelines) to model. The
neural network is built dynamically at runtime by composing the reserved modules that
correspond to each node in a given DAG in the same graphical structure as the DAG.

dynamically assembled network are trained. Since the other modules did not make up the

network, their weights are not updated. Because of this dynamic nature, only instances of

data that contain the same DAGs can be (mini-)batched together.

13
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Chapter 4

Results and Analysis

We tuned each metamodel’s hyper-parameters using a random search over 70+ different

hyper-parameter configurations on the validation split of the metadataset. We report final

metamodel scores on the test split of the metadataset using the best hyper-parameter

configuration found on the validation split. We combined the train and validation splits of

metadata to train the metamodels for the final run on the test split.

We ran the metamodels that used any type of pseudo-randomness five times and

report the average and standard deviation over those runs. Since this work is separated from

the context in which it would live, i.e., inside an AutoML system, we will explore these results

from multiple points of view to illuminate the strengths and weaknesses of these different

metamodels.

4.1 Estimating Pipeline Performance

We evaluate the ability of each metamodel to estimate pipeline performance by measuring

both the average spread of the errors with root mean squared error (RMSE) and the Pearson

correlation between the predicted values and true values. The results are shown in Table 4.1.

In general, there is an apparent trend that utilizing the granular pipeline metadata is associated

with lower error and higher Pearson correlation when estimating pipeline performance.

The DAG LSTM has both the lowest RMSE and the highest Pearson correlation,

perhaps because this metamodel utilizes the available metadata completely. Its weights

are trained directly on the pipeline metadata. Furthermore, its DAG nature allows it to
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Regression Model RMSE Pearson Correlation
Mean 0.302 ± 0.000 N/A
Linear 0.243 ± 0.000 0.680 ± 0.000
k-NN Regression 0.265 ± 0.000 0.524 ± 0.000
Random Forest 0.211 ± 0.001 0.739 ± 0.004
Meta Auto-sklearn 0.213 ± 0.001 0.739 ± 0.001
LSTM 0.376 ± 0.130 0.531 ± 0.184
Transformer 0.193 ± 0.005 0.782 ± 0.010
DAG LSTM 0.182 ± 0.006 0.799 ± 0.010
DNA 0.198 ± 0.005 0.758 ± 0.010

Table 4.1: Mean and standard deviation of metamodel RMSE (lower is better) and Pearson
correlation (higher is better) over five runs with different random initializations. Scores in
bold are within one standard deviation of the best mean score.

learn the relationships between the structure of the pipeline and the ML algorithms used

in the pipeline. These results are more justified when comparing the DAG LSTM to the

next-best models. The Transformer only uses linearized DAG information and the weights of

the DNA were not trained explicitly on the pipeline metadata. Despite the DNA’s implicit

use of the pipeline metadata, it is a competitive metamodel. One might then expect the

LSTM to perform similarly to the Transformer, since they used the same representation

of the metadata. Perhaps the rigid, sequential nature of the LSTM is more limited in its

ability to find patterns in the metadata than the more flexible attention mechanism of the

Transformer.

4.2 Ranking Pipelines

Next, we explore how well the metamodels’ estimates of performance can be used to rank

pipelines. In an applied AutoML context, a metamodel could estimate the performance of a

set of pipelines on a given query dataset, and then use those estimates of performance to

rank the pipelines. Because computational resources are always limited, this approach would

allow the AutoML system to prioritize which pipelines to explore next.
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Ranking pipelines by estimating performance has an advantage over directly learning

to rank a set of pipelines. Ranking pipelines directly requires the metamodel to operate

simultaneously on all candidate pipelines. Adding a single pipeline to that ranking requires

re-ranking all pipelines. With an estimate of performance, adding a new pipeline to the

ranking requires that the metamodel process only the new pipeline instead of all previously

considered pipelines. This advantage applies to AutoML systems like Auto-sklearn [18],

TPOT [35], and AlphaD3M [15, 16], where pipelines are generated dynamically at runtime.

We measure the quality of rankings made by the metamodels using the Spearman

correlation coefficient (following [5]), as well as the normalized discounted cumulative gain

(nDCG). The Spearman correlation measures the monotonicity of the estimated ranking with

the true ranking and can only be used when a total ranking is provided. The nDCG metric

is often used in information retrieval and combines the true pipeline score with the estimated

ranking. Recall that the Mean and k-ND metamodels are unable to provide total rankings

for a set of pipelines on a given dataset (Section 3.2). The ranking results of our metamodels

are shown in Table 4.2.

The metamodels that gave the best estimates of performance (Table 4.1) do not

necessarily yield the best ranking in terms of Spearman correlation. This may suggest that

there is too much error in the estimates of performance, which creates noisier rankings. Meta

Auto-sklearn, though only moderately competitive in estimating pipeline performance, is

significantly better at ranking pipelines than any other metamodel. While nDCG had the

desirable property of incorporating the pipelines’ performance with the ranking, it did not

prove to be a very discriminatory measurement for choosing a metamodel.

4.3 Ranking at k

One may well argue that the quality of the total ranking of pipelines is much less relevant

than the quality of the top few ranked pipelines. When we search the Internet, we do not

care about the quality of the millions of search results, rather just the top several results.
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Model Spearman Correlation nDCG
Random 0.000 ± 0.006 0.948 ± 0.001
Linear Regression 0.437 ± 0.000 0.981 ± 0.000
k-ND (Auto-sklearn) N/A 0.949 ± 0.000
Random Forest 0.538 ± 0.008 0.983 ± 0.003
Meta Auto-sklearn 0.566 ± 0.003 0.984 ± 0.000
LSTM 0.320 ± 0.144 0.973 ± 0.014
Transformer 0.543 ± 0.015 0.986 ± 0.003
DAG LSTM 0.527 ± 0.013 0.981 ± 0.008
DNA 0.521 ± 0.011 0.972 ± 0.006

Table 4.2: Mean and standard deviation of metamodel Spearman correlation (higher is better)
and nDCG (higher is better) over five runs with different random initializations. Scores in
bold are within one standard deviation of the best mean score.

We thus refine our evaluation of the metamodels to consider the quality of the top k ranked

pipelines. We measure the nDCG@k, or the nDCG of the top k ranked pipelines. We also

measure how many of the best pipelines were among the top k ranked pipelines and label it

nBest@k. This gives us an idea of how many of the best pipelines are ranked highly.

One may also argue that ranking is not as important as the quality of the best pipeline.

An AutoML system would likely run as many pipeline as possible until the time budget is

spent, and then recommend the executed pipelines in the ordering of their true performance.

In this scenario, the value of k would be determined dynamically. Thus, the quality of the

underlying system design (i.e. metamodel) could be measured by the difference in performance

between the best known pipeline and the best pipeline among the k executed pipelines. We

call this measurement Regret@k. The results of the ranking at k measures are shown in

Table 4.3, with k values of 25 (top) and 100 (bottom).

Interestingly, these results differ from the estimating performance and total ranking

results. Most notably, the k-ND and Random metamodels have the lowest Regret@k with low

standard deviation, despite not performing as well in the performance estimation and ranking

measurements. This suggests that an AutoML system that uses the k-ND metamodel or

simply random search of previously generated pipelines would effectively and reliably generate

a good pipeline. However, this generalization may be limited to small pipeline spaces.
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Model nDCG@25 nBest@25 Regret@25
Random 0.759 ± 0.005 1.96 ± 0.16 0.014 ± 0.002
Linear Regression 0.886 ± 0.000 2.86 ± 0.00 0.024 ± 0.000
k-ND 0.805 ± 0.000 1.91 ± 0.00 0.011 ± 0.000
Random Forest 0.906 ± 0.007 4.50 ± 0.53 0.026 ± 0.002
Meta Auto-sklearn 0.900 ± 0.001 4.09 ± 0.15 0.029 ± 0.001
LSTM 0.834 ± 0.059 2.95 ± 0.77 0.045 ± 0.040
Transformer 0.899 ± 0.007 3.88 ± 0.62 0.044 ± 0.005
DAG LSTM 0.890 ± 0.017 3.78 ± 0.29 0.042 ± 0.018
DNA 0.872 ± 0.013 3.83 ± 0.42 0.046 ± 0.012

Model nDCG@100 nBest@100 Regret@100
Random 0.775 ± 0.004 16.7 ± 0.4 0.005 ± 0.001
Linear Regression 0.898 ± 0.000 22.1 ± 0.0 0.018 ± 0.000
k-ND 0.793 ± 0.000 17.0 ± 0.0 0.002 ± 0.000
Random Forest 0.916 ± 0.007 28.8 ± 2.6 0.018 ± 0.002
Meta Auto-sklearn 0.914 ± 0.000 25.6 ± 0.8 0.020 ± 0.001
LSTM 0.843 ± 0.056 20.3 ± 3.5 0.021 ± 0.017
Transformer 0.912 ± 0.006 26.6 ± 3.3 0.028 ± 0.004
DAG LSTM 0.902 ± 0.018 26.0 ± 0.8 0.027 ± 0.013
DNA 0.886 ± 0.009 26.0 ± 1.1 0.022 ± 0.005

Table 4.3: Mean and standard deviation of metamodel nDCG@k (higher is better), nBest@k
(higher is better), and Regret@k (lower is better) over five runs with different random
initializations with k values of 25 (top) and 100 (bottom). Scores in bold are within one
standard deviation of the best mean score.

Regret@k is fundamentally different from the other measures in that it is not a type

of averaging over many pipeline scores. A high nDCG@k or nBest@k indicates that the

metamodel can select many good pipelines in the set of k. Given the noisy estimates of

performance, perhaps there is a trade-off in the metamodels’ ability to select one of the best

pipelines and to select a pool of many good (but not quite the best) pipelines, among the k

recommended.

4.4 Why is Random so good?

As shown in Table 4.3, the Random metamodel offers a competitive baseline in terms of

choosing at least one high scoring pipeline with its low Regret@k score. It seems counter-

intuitive that the most naive model outperforms the models that get to look at the training
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data. We do note that these models were trained to estimate pipeline performance directly

by minimizing the L2 loss, not to select the best pipeline of a collection. Still, we explore

why Random might be such a strong baseline.

Pipeline scores (F1 macro) lie on the interval [0, 1]. Suppose for some dataset that the

pipeline scores were distributed uniformly across that interval, with the best pipeline having

a perfect score of 1. Then choosing k pipelines at random, or in other words ranking the

pipelines randomly and choosing the top k from that ranking, would likely yield k pipelines

that were more or less uniformly distributed on [0, 1]. The best of the k would, of course, be

close to 1. More formally, the score of the best pipeline under these assumptions is known

as the largest-order statistic [11], whose expected value, when sampling from a uniform

distribution, is k/(k + 1).

Under these assumptions, when k is 100, we would expect the Random metamodel to

pick a pipeline with a score of 100/101 ≈ 0.990. The Regret@k, assuming that a pipeline with

a perfect score exists, would be 0.010. We observe in Table 4.3 that the Random metamodel

performs similarly. While pipeline scores may not be uniformly distributed, this analysis

suggests that sampling pipelines uniformly at random will generate at least one that is close

to the best possible pipeline for a given dataset.
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Chapter 5

Conclusion

We conducted an offline metalearning experiment to estimate the performance of ML

pipelines on novel tasks. Our approach expands on past metalearning work by exploiting

granular pipeline metadata. In particular, the metamodels observe which ML algorithms are

used at each step in the pipeline as well as the DAG structure of the pipeline. This approach

advances beyond treating pipelines as entirely distinct black-box models and restricting the

pipeline space. We then used this estimate of performance to rank pipelines as a hypothetical

practical application of metalearning in an AutoML system.

We found empirically that the metamodels that utilize more granular metadata tend

to estimate pipeline performance better. Our proposed Dynamic Neural Architecture (DNA)

was competitive with the best metamodels, despite learning only implicitly from the pipeline

metadata. On an absolute scale, the metamodels did not estimate performance very well,

creating relatively weak rankings of pipelines. Selecting pipelines based on dataset similarity

or even randomly ranking pipelines (that are already known to run) far outperform the more

sophisticated metamodels.

This work is preliminary and calls for further metalearning research. Improved

metafeatures could yield better representations of datasets, especially embeddings such as

Dataset2Vec [29]. Learned embeddings would allow for end-to-end differentiable metalearning,

such that metamodels could operate directly on raw datasets and pipelines to estimate

pipeline performance. Only two pipeline DAG structures and default hyper-parameters and

were used to limit the scope of the metadata generated. However, some of the metamodels
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we explored would be able to estimate the performance of pipelines structures not found

in the training data. Combining DNA with a DAG embedding model, such as the DAG

LSTM [48, 58], would perhaps perform better than either model alone. We could also expand

the metamodels to operate on the hyper-parameters used, especially DNA because it creates

a separate network module for each ML algorithm modeled. In short, richer metadata

representations and much more metadata could be utilized to improve metalearning.
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Appendix A

Datasets

Dataset from Zenodo [25]:

• Word Level Classification Dataset

Datasets from UCI Machine Learning Repository [13, 31]:

• Hepatitis Dataset

• Breast Cancer Wisconsin Diagnostic Dataset

• DrivFace Dataset

• Breast Cancer Wisconsin Original Dataset

• SPECT Heart Dataset

Datasets from OpenML [52]:

• Abalone Dataset (3 classes)

• ADA Agnostic Dataset

• ADA Prior Dataset

• Adult Dataset

• Allrep Dataset

• Analcatdata Authorship Dataset

• Analcatdata Birthday Dataset

• Analcatdata BroadwayMult Dataset

• Analcatdata DMFT Dataset

• Analcatdata GermanGSS Dataset

• Analcatdata GSSSexSurvey Dataset

• Analcatdata HallOfFame Dataset
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• Analcatdata Lawsuit Dataset

• Analcatdata Reviewer Dataset

• Anneal Dataset

• Arsenic Female Bladder Dataset

• Arsenic Male Bladder Dataset

• Artificial Characters Dataset

• Audiology Dataset

• Australian Dataset

• AutoHorse Dataset

• AutoUniv-Au1-1000 Dataset

• AutoUniv-Au4-2500 Dataset

• AutoUniv-Au6-1000 Dataset

• AutoUniv-Au6-400 Dataset

• AutoUniv-Au6-750 Dataset

• AutoUniv-Au7-1100 Dataset

• AutoUniv-Au7-500 Dataset

• AutoUniv-Au7-700 Dataset

• Backache Dataset

• Badges2 Dataset

• Balance Scale Dataset

• Banana Dataset

• Bank Marketing Dataset

• Banknote Authentication Dataset

• Baseball Dataset

• Biomed Dataset

• Blood Transfusion Service Center Dataset

• Breast Cancer Dataset

• BreastTumor Dataset

• Breast W Dataset
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• CalendarDOW Dataset

• Car Dataset

• Cardiotocography Dataset

• Cardiotocography Dataset (3 classes)

• Cars Dataset

• CastMetal1 Dataset

• Chscase Funds Dataset

• Chscase Vine2 Dataset

• Chscase Whale Dataset

• Click Prediction Small Dataset

• Climate Model Simulation Crashes Dataset

• CMC Dataset

• Colic Dataset

• Collins Dataset

• Corral Dataset

• CostaMadre1 Dataset

• Credit Approval Dataset

• Credit G Dataset

• CRX Dataset

• Cylinder Bands Dataset

• Dermatology Dataset

• Diabetes Dataset

• Diggle Table A2 Dataset

• Dresses Sales Dataset

• E. Coli Dataset

• Eucalyptus Dataset

• Eye Movements Dataset

• First Order Theorem Proving Dataset

• FishCatch Dataset
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• Flags Dataset

• Flare Dataset

• GAMETES Epistasis 2 Way 20atts 0.1H EDM 1 1 Dataset

• GAMETES Epistasis 2 Way 20atts 0.4H EDM 1 1 Dataset

• GAMETES Epistasis 3 Way 20atts 0.2H EDM 1 1 Dataset

• GAMETES Heterogeneity 20atts 1600 Het 0.4 0.2 50 EDM 2 001 Dataset

• GAMETES Heterogeneity 20atts 1600 Het 0.4 0.2 75 EDM 2 001 Dataset

• Glass Dataset

• Grub Damage Dataset

• Haberman Dataset

• Hayes Roth Dataset

• Heart C Dataset

• Hepatitis Dataset

• Hill Valley Dataset

• Housing Dataset

• Indian Liver Patient Dataset

• Ionosphere Dataset

• Irish Dataset

• Japanese Vowels Dataset

• JM1 Dataset

• KC1 Dataset

• KC2 Dataset

• KC3 Dataset

• King+Rook versus King+Pawn Dataset

• Led24 Dataset

• LED Display Dataset

• Lowbwt Dataset

• Machine CPU Dataset

• MC2 Dataset
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• MeanWhile1 Dataset

• MegaWatt1 Dataset

• MFeat Fourier Dataset

• MFeat Karhunen Dataset

• MFeat Morphological Dataset

• MFeat Zernike Dataset

• MiceProtein Dataset

• M of N 3 7 10 Dataset

• Monks Problems 1 Dataset

• Monks Problems 3 Dataset

• MW1 Dataset

• Nursery Dataset

• One Hundred Plants Margin Dataset

• One Hundred Plants Texture Dataset

• OptDigits Dataset

• Ozone Level 8hr Dataset

• Page Blocks Dataset

• Parity 5 Plus 5 Dataset

• Parkinsons Dataset

• PC1 Dataset

• PC3 Dataset

• PC4 Dataset

• PenDigits Dataset

• Phoneme Dataset

• PieChart1 Dataset

• Pima Dataset

• PizzaCutter1 Dataset

• Planning Relax Dataset

• PopularKids Dataset
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• PRNN Crabs Dataset

• PRNN Synth Dataset

• pwlinear Dataset

• QSAR Biodegradation Dataset

• Ringnorm Dataset

• RMfTSA Cyprus Tourist Arrivals Dataset

• RMfTSA Sleep Dataset

• Robot Failures LP5 Dataset

• South Africa Heart Disease Dataset

• Seeds Dataset

• Segment Dataset

• Seismic Bumps Dataset

• Servo Dataset

• Smartphone Based Recognition Of Human Activities Dataset

• Solar Flare 1 Dataset

• Solar Flare 2 Dataset

• Sonar Dataset

• Soybean Dataset

• Spambase Dataset

• SPECTF Heart Dataset

• Splice Dataset

• Steel Plates Fault Dataset

• Synthetic Control Dataset

• Tamil Nadu Electricity Dataset

• Teaching Assistant Dataset

• Tecator Dataset

• Texture Dataset

• Thoracic Surgery Dataset

• Thyroid Allbp Dataset
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• Thyroid Allhyper Dataset

• Thyroid Ann Dataset

• Thyroid Dis Dataset

• Thyroid New Dataset

• Tic Tac Toe Dataset

• Titanic Dataset

• Tokyo1 Dataset

• Triazines Dataset

• Twonorm Dataset

• User Knowledge Dataset

• Vehicle Dataset

• Vertebra Column Dataset

• Vertebra Column Dataset (2 classes)

• Volcanoes A1 Dataset

• Volcanoes A2 Dataset

• Volcanoes A3 Dataset

• Volcanoes A4 Dataset

• Volcanoes B1 Dataset

• Volcanoes B4 Dataset

• Volcanoes D1 Dataset

• Vote Dataset

• Vowel Dataset

• Wall Robot Navigation Dataset

• Wall Robot Navigation Dataset (3 attributes)

• Wall Robot Navigation Dataset (5 attributes)

• Waveform 5000 Dataset

• Breast Cancer Wisconsin Diagnostic Dataset

• Wholesale Customers Dataset

• Wilt Dataset
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• Wine Quality White Dataset

• XD6 Dataset
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Appendix B

Computed Metafeatures

1. Number Of Instances

2. Number Of Features

3. Number Of Numeric Features

4. Number Of Categorical Features

5. Ratio Of Numeric Features

6. Ratio Of Categorical Features

7. Number Of Classes

8. Mean Class Probability

9. Skew Class Probability

10. Kurtosis Class Probability

11. Min Class Probability

12. Quartile 1 Class Probability

13. Quartile 2 Class Probability

14. Quartile 3 Class Probability

15. Max Class Probability

16. Minority Class Size

17. Majority Class Size

18. Dimensionality

19. Number Of Missing Values

20. Ratio Of Missing Values

21. Class Entropy

22. Naive Bayes Err Rate
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23. Naive Bayes Kappa

24. kNN 1N Err Rate

25. kNN 1N Kappa

26. Decision Stump Err Rate

27. Decision Stump Kappa

28. Random Tree Depth 1 Err Rate

29. Random Tree Depth 1 Kappa

30. Random Tree Depth 2 Err Rate

31. Random Tree Depth 2 Kappa

32. Random Tree Depth 3 Err Rate

33. Random Tree Depth 3 Kappa

34. Mean Decision Tree Level Size

35. Total Metafeature Compute Time

36. Skew Decision Tree Level Size

37. Kurtosis Decision Tree Level Size

38. Min Decision Tree Level Size

39. Decision Tree Node Count

40. Max Decision Tree Attribute

41. Max Decision Tree Level Size

42. Linear Discriminant Analysis Kappa

43. Quartile 1 Decision Tree Level Size

44. Quartile 2 Decision Tree Level Size

45. Quartile 3 Decision Tree Level Size

46. Mean Decision Tree Branch Length

47. Skew Decision Tree Branch Length

48. Decision Tree Leaf Count

49. Decision Tree Height

50. Min Decision Tree Branch Length

51. Max Decision Tree Branch Length
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52. Decision Tree Width

53. Mean Decision Tree Attribute

54. Kurtosis Decision Tree Branch Length

55. Number Of Features With Missing Values

56. Ratio Of Features With Missing Values

57. Number Of Instances With Missing Values

58. Ratio Of Instances With Missing Values

59. Standard Deviation Decision Tree Attribute

60. Skew Decision Tree Attribute

61. Kurtosis Decision Tree Attribute

62. Min Decision Tree Attribute

63. Quartile 1 Decision Tree Attribute

64. Quartile 2 Decision Tree Attribute

65. Quartile 3 Decision Tree Attribute

66. Standard Deviation Class Probability

67. Linear Discriminant Analysis Err Rate

68. Quartile 1 Decision Tree Branch Length

69. Quartile 2 Decision Tree Branch Length

70. Quartile 3 Decision Tree Branch Length

71. Standard Deviation Decision Tree Level Size

72. Standard Deviation Decision Tree Branch Length
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